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Thermal Expansion of Composites 1 

P. G.  K l e m e n s  2 

A theory is developed for the overall thermal expansion of a composite con- 
sisting of either spherical or long cylindrical inclusions of one material in a 
matrix of another. The strain field of a single inclusion consists of a uniform 
expansion and a short-range strain field. These two components are related by 
minimizing the elastic strain energy. To account for a dense array of inclusions, 
average properties of the mixture are used for the long-range field, but those of 
the matrix alone for the short-range field. The net dilatation is thus found for 
inclusions of mismatching volume; hence one finds a differential expression for 
the thermal expansion in terms of the volume fraction of inclusions, the 
individual thermal expansivities, the bulk moduli of inclusion and matrix, the 
shear modulus of the matrix, and, in the case of cylinders, the shear modulus of 
the inclusions. This expression is integrated over temperature; one accounts for 
plasticity by letting the shear modulus depend on the temperature and on the 
accumulated shear strain. A representative numerical example is given. 
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1. I N T R O D U C T I O N  

A c o m p o s i t e  wh ich  has  inc lus ions  in a m a t r i x  wi th  different  t h e r m a l  e x p a n -  

sivities d e v e l o p s  in t e rna l  s tresses as the  t e m p e r a t u r e  is changed .  As a result ,  

the  ove ra l l  coeff ic ient  of  t h e r m a l  e x p a n s i o n  differs f r o m  a s imple  v o l u m e  

average .  F o r  smal l  t e m p e r a t u r e  changes  these  in t e rna l  stresses r e m a i n  

wi th in  the  e las t ic  reg ime,  bu t  l a rge r  t e m p e r a t u r e  changes  give rise to  p las t ic  
f low and  hysteresis .  

T h e  p r o b l e m  of  an  e l l ipso ida l  i nc lus ion  inse r t ed  wi th  s o m e  misf i t  in to  

an  elast ic  m a t r i x  was  t r e a t ed  by Eshe lby  [1 ] ;  the  specia l  cases of  a sphere  
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and an infinite cylinder are well known (see, for example, Ref. 2). A ran- 
dom distribution of spherical inclusions was discussed by Eshelby [3] as a 
model for point defects. Wakashima et al. [-4] considered differential ther- 
mal expansion for ellipsoidal inclusions, treating the matrix and the 
inclusions within it as a single effective medium with a uniform strain field. 
Differential thermal expansions with spherical inclusions had been treated 
previously by Kerner [5]. All these treatments assumed linear elasticity. 

The present treatment is confined to spheres and to infinite cylinders 
and is thus not novel. It, too, uses the effective medium approximation but 
expresses the results in a different form by separating the strain field into its 
dilatational and shear components. In the elastic regime it is equivalent to 
previous solutions, which are expressed in terms of the Poisson ratio and 
the Young's modulus, but the present formulation facilitates the extension 
into the plastic regime. 

2. ELASTIC FIELD ABOUT A SPHERICAL INCLUSION 

Consider a spherical hole of radius R cut out of the matrix, into which 
is forced a spherical inclusion, originally of radius R + A R  2 so that the sur- 
faces join. The hole expands (or contracts, depending on the sign of AR2) 
to a radius R + AR. The displacement u(r) of a point in the matrix distant r 
from the center (r > R) must be of the form [2] 

u(r) = Ar  + B/r  2 (1) 

and, in particular, u ( R ) =  AR. The spherical inclusion, which changes its 
radius by A R - A R 2 ,  experiences a uniform dilatation. The matrix 
experiences a uniform dilatation as a result of the term Ar in Eq. (1), while 
the second term has shear but no dilatation. If there are many inclusions, 
so that c is the volume fraction of inclusions, we have the following 
dilatational strain energy: 

Edil = E1 + E2 (2) 

where E 1 is the dilatational energy of the inclusions, and E 2 that of the 
matrix, of fractional volume ( 1 -  c), so that 

E1 = (9/2) cKI( AR2 - A R  )2/R 2 (3) 

E2 = (9/2)(1 - c) K M A  2 (4) 

where KI and KM are the bulk moduli of inclusion and matrix material, 
respectively. 
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At a point r in the matrix the displacement B / r  2 describes three prin- 
cipal strains, one radially outward, of magnitude - 2 B / r  3, and two normal 
to the radius vector, each of magnitude B / r  3. The dilatation due to this 
term in Eq. (1) vanishes, and the strain energy density becomes 

Wsh = 6 # B Z / r  6 (5) 

where/~ is the shear modulus of the matrix. The total shear energy around 
each inclusion is given by 

L'sh = msh(F) 4~cr 2 dr = (4~z/3) R361~(B/R3) 2 (6) 

ad since (4~/3) R 3 is the volume of each inclusion, the total shear energy, 
per unit volume of material, becomes 

E 3 = 6 c k t ( g / R 3 )  2 (7) 

The total strain energy per unit volume of material is 

E = E  1 + E 2 + E  3 (8) 

Now the parameters A and B are given by the condition that E should 
be a minimum with respect to variations in A and B. These two conditions 
suffice to determine these two parameters. Minimizing E is equivalent to 
balancing the stresses at the interface of inclusion and matrix. The use of 
the complete solution in Eq. (1) rather than just the term B / r  z is equivalent 
to equating to zero the average normal stress at the external surface by 
introducing an image force. As discussed by Eshelby [3]  this changes the 
net dilatation of the medium; the term A r  in Eq. (1) plays a similar role. 

It is convenient to define 

and 

fl = B / R  3 (9) 

= 3 R 2 / R  (10) 

The conditions of elastic stability are ~?E/OA = 0 and OE/OB = 0. Note that 
in E 1 

( A R 2  --  A R ) / R  = 7 - A - fl (1 l) 

so that these two conditions become, respectively, 

9cK~(7 - A - /~)  = 9c(1 - c)  K M A  (12) 

g40'7 i I4 
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and 

9cKi(~/- A - fl) = 12#eft 

By eliminating y, A, and fl in turn from Eqs. (12) and (13), 

(13) 

c 4/~ (14) 
A c P 3K---- s 

I 4# 4/~c ] - 1 ( 15 ) 

c 4 # I  4# 4#c ] -1 
A = Y l _ c 3 K M  1 + ~-~i + 3(1 _ c) KM 

(16) 

Note that for low concentrations fi is proportional to 7 but does not 
depend on c, while A is proportional to c. 

3. ELASTIC FIELD A B O U T  AN INFINITE C Y L I N D E R  

Consider an inclusion which is an infinite cylinder with its axis on the 
z axis. Choosing cylindrical coordinates (r, 0, z), the displacement field in 
the matrix is of the form [2] 

ur= Ar + B/r 

and the principal strains are 

e z z  = e 0 

with dilatation 

~l z : e o Z  

err = A - B/r ~, eoo= A + B/r 2 

(17) 

(18) 

3 =2A +eo (19) 

while the component B/r in ur is nondilatational. 
If there is an assembly of long cylindrical inclusions, randomly orien- 

ted, the expansion of the medium must be isotropic; this requires eo = A. 
The principal stresses can be calculated from 

aii= 2#eii + ,~A (20) 

and the strain energy density W(r) from 

W(r) = �89 ~ aiieei (21) 
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where 2 is the Lam6 constant and K~ = 2 + 2/~/3 is the bulk modulus of the 
matrix. Thus, using Eq. (19), 

W ( r )  = 3/~A 2 + 2 # B 2 / r  4 + (9/2) 2A 2 
(22) 

= 2 # B 2 / r  4 + �89 KM 

so that the dilatation and the nondilatational shear components contribute 
independently to the energy density. The strain energy of the matrix, per 
unit volume of material, becomes 

EM = �89 - c) K M  + c 2 # B 2 / R  4 (23) 

since the B term yields, per unit length of inclusion, 

EB = 2#B 2 2 ~ r r - 4  dr = 2k t (B2 /R  4) ~ R  2 (24) 

and since one can equate, for an assembly of inclusions, xR 2 with c, the 
fractional volume of inclusions. 

We now assume that the cylindrical inclusions have a dimensional 
misfit with respect to the matrix which is the same in the plane normal to 
the z axis as in the z direction itself. This is the misfit between inclusion and 
matrix which arises from isotropic thermal expansions which differ between 
inclusion and matrix. Thus let the inclusions have originally radius 
R + A R 2  and fractional length difference A R 2 / R ;  the final radius is R + A R ,  

and the final longitudinal strain must match the linear strain A of the 
matrix. The strain within the inclusion is uniform, and the components of 
principal strain are 

( A R  2 - A R ) / R  (2 transverse components) 
(25) 

R2/R -- A ( 1 long i tud ina l  component )  

Resolving this into a dilatation 

A I = 3 A R z / R  - 2 A R / R  - A 

= 3 A R 2 / R  - 3A - 2 B / R  2 

and three principal strains of zero dilatation and magnitude 

- 2 B / R  2, B / R  2, B / R  2 

the strain energy of the inclusions, per unit volume of material, becomes 

E 1 = (9/2) cKi (  7 - A --  2/3/3) 2 + 6c#i/~ 2 (26) 
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where K~ a n d / ~  are the bulk and shear moduli of the inclusion, fl = B / R  2, 
and ~ = AR2 /R .  The total strain energy per unit volume of material is the 
sum of Eqs. (23) and (26), i.e., 

E = E M + E I (27) 

Again, the parameters A and fl are given in terms of 7 by the condition 
of stability 

~?E/OA = 0 

From these, one finds 

where 

and where 

and ~E/afi  = 0 (28) 

fl = (3/2)  7/f~(#) 

A =c(1-c) 17f2(~)/fl(u) 
(29) 

(30) 

f~(/x) l+(/~+3/q)(~-~ c ) = ~ ( 1 - 7 ) / , ; ~ ,  (31) 

f2(k t) = (HM + 3#I)/KM (32) 

4. VOLUME CHANGE AND THERMAL EXPANSION 

In the case of both spherical and cylindrical inclusions, the volume 
expansion comes from two sources: the A field of Eq. (1), respectively (17), 
which is a uniform expansion of the matrix and the included cavities, and 
the B field in either case, which represents an additional expansion of the 
cavities containing the inclusions. Since the B field is nondilatational, it 
transmits the expansion of the cavity 

(~ V B = 4rcr2B/r 2 (or 6 V~ = 2rcrB/r), 

which is independent of r, to the outer boundary. Therefore the overall 
dilatation becomes 

If the matrix 

6 V / V =  3A + 3cfl (spheres) (33a) 

6 V / V =  3A + 2cfl (cylinders) (33b) 

and the inclusions have different coefficients of 
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volumetric thermal expansion, aM and 7i, respectively, the misfit parameter 
7 resulting from the differential thermal expansion obeys 

3d~)/tiT= 0~i - -  ( ~ M  (34) 

where T is temperature. For an isolated inclusion, Eqs. (33) and (34) deter- 
mine the overall thermal expansion coefficient e if A and fl are expressed in 
terms of 7. One is, however, interested in the case when c is not small. The 
following effective medium approximation is made. 

For purposes of calculating the misfit between matrix and inclusion, 
one should replace the thermal expansion of the matrix by the overall ther- 
mal expansion of the medium, i.e., Eq. (34) should be replaced by 

3 d ~ / d r =  ~ - ~ (35) 

where ~, the overall expansion, is given by 

e = e M + ~  (36) 

and where g)V/V is given by whichever is the appropriate form of Eq. (33), 
i.e., dA/dT and dfi/dT are expressed~ither by Eqs. (15) and (16) or by 
Eqs. (29) and (30)---in terms of @/dT of Eq. (35). 

Also, for purposes of calculating the dilatational strain energy, the 
relative volume contributions of matrix and inclusions were used, so that 
this property of the medium was averaged. For purposes of calculating the 
energy of the shear strain field (B field), it was assumed that this field 
resides entirely in the matrix, and the shear modulus of the matrix was 
used. Since the shear strain field is of a short range, this is a good 
approximation, unless the inclusions touch frequently. Finally, the shear 
strain energy was calculated for each inclusion individually; this implies 
that cross-terms in the energy due to neighboring inclusions vanish in the 
average. This would not be justified if the position of the inclusions have a 
short-range order: since inclusions cannot overlap, some such error is 
probably incurred. 

In the case of spherical inclusions one finds from Eq. (36) 

d ~ d7 
~--~ (--~-) = 3 cF(/t) )--~ (37) 

where 

1 + 4#/3(1 --c)  KM 
F ( # ) =  1 +4#/3K~+4c#/3(1 c)K M (38) 
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SO that, from Eqs. (36), (37), and (35), 

~- 0~ M "t- cF(p)(~ I - -  ~ )  ( 3 9 )  

This leads to the final result 

(1 + cF) ~ = c~ M + c F ~  (40) 

In the case of cylindrical inclusions 

d (6_~ 3cG(/~)J@ (41) 
d T  

where, in terms off~ and f2 of Eqs. (31) and (32), 

G(p) = [1 + lf-~2 c ] / f l  (42) 

and is thus a function of both/h and #M. Similarly to Eqs. (39) and (40) 

c~ = c~ M + cG(cq - c~) (43) 

and 

(1 + cG) ~ = aM + cGcq (44) 

Equations (40) and (44) give the overall coefficient of thermal expan- 
sion in terms of the thermal expansion coefficients of the matrix and the 
inclusions, the elastic moduli of both components, and the volume fraction 
of the inclusions. Note that it has the same form as a volume average of 
matrix and inclusions, except that the volume fraction of inclusions has a 
modified value of c/(1 + cF) or c/(1 + cG), respectively. 

5. PLASTIC REGIME 

Equations (40) and (44) describe the dilatation due to an infinitesimal 
temperature change and can be integrated over a finite temperature interval 
even if aM and cq are functions of temperature. However, the functions F 
and G depend on the elastic moduli. Not only are the moduli somewhat 
temperature dependent, but also the shear moduli are functions of the 
shear strain. The appropriate shear moduli in F and G are those defined 
differentially, i.e., 

2p = da]de; ,  i va j  (45) 
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in terms of stress and strain components in the contracted notation; in the 
plastic regime /~ depends on the prior shear strain, hence on the net dif- 
ferential expansion. 

Now the strain in the matrix is a function of position, so that, strictly 
speaking,/~ becomes a function of r once the plastic regime is reached, and 
the equations derived for the strain field no longer apply. However, most of 
the shear strain energy resides at the matrix-inclusion interface r = R .  
Hence one may approximate the shear energy by treating/~ as a function of 
fl, the shear strain at the interface. 

Using Eqs. (15), (35), and (40) for spherical inclusions and integrating 
the strain from a temperature T o at which the inclusions and matrix are 
unstrained 

r [ 4/, _4c~_ 1 1 1 
fimfTO ((XI-O~M) 1 "~- "~ I  "~ (1-- C) 3KM] 3(1 + cF) 

For cylindrical inclusions, using Eqs. (29), (35), and (44), 

fl = (0~ 1 -- aM)[3f,(#M, /q)(1 + cG)] --1 dT 
TO 

dT (46) 

(47) 

Thus, to calculate the thermal expansion from Eq. (40) or (44), one 
must increase the temperature by steps, calculate fi, and determine #, which 
is a function of fl and T. This new value of/~ is then used in the next tem- 
perature step. In the case of cylinders there are two shear moduli, which 
are functions of fi and T. This procedure cannot be expressed in a closed 
algebraic form but is suited to numerical integration. 

Note that if p = 0, F =  1 and 

1 
d f l  = ( ~ i  - -  0~M) ~ l - ~ ,  ~ dT (48) 

J~ l+c~ 

while for cylinders, if p~ = 0 and PM = 0, f l  = 1 and G = 1, and the same 
would hold. Thus in a simple model of plasticity in which p is constant 
until it suddenly drops to zero when a yield strain fly is reached, one can 
define a yield temperature Ty such that f l=  fly, where fi is given by 
Eq. (46) or (47). Then 

d = ~ dT= [(1 + cF)-~(~M + cF~)] dT 

+ ( l + c )  I (~M+C~)dT (49) 
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for spheres, while a similar expression, with G replacing F, holds for cylin- 
ders. 

6. N U M E R I C A L  I L L U S T R A T I O N  

Consider a matrix and inclusions with the following parameters:  

a M = 6 •  1 0 - S K  1 

K M = 8 • 101~ J" m - 3  

# M = 3 •  101Oj .m 3 

~ i = 2 •  5 K 1 

K I = 3 x 1011 J '  m - 3  

#1 = 1.6 x 1 0 1 1 J .  m 3 

For  volume fractions c =  0.1, 0.2, and 0.4; the volume-averaged expansion 
coefficients would be ~ =  5.6, 5.2, and 4 .4x 10 5 K  1, respectively. For  
spherical inclusions F =  1.308, 1.291, and 1.250, respectively; the overall 
expansion coefficients are eF = 5.54, 5.18, and 4.67 x 10 5 K 1. For  cylin- 
drical inclusions G=2 .372 ,  2.089, and 1.673, respectively; the overall 
expansion coefficients are eG = 5.23, 5.02, and 4.40 x 10 5 K 1. There is a 
general trend for the expansion to be less than the volume average for low 
values of c and more  than the volume average for higher values of c. 

In the case of spheres with c = 0.2, if we assume the yield strain of the 
matrix to be flY = 3 x 10 3 and independent of T, the plastic regime is 
reached [see Eq. (46)]  if T -  To = 120 K. In  the plastic regime the expan- 
sion coefficient becomes the volume average for an effective concentrat ion 
of c/(1 + c), i.e., for 0.167, which yields 5.33 x 10 5 K 1, and is thus slightly 
enhanced. Hysteresis effects should occur over a temperature span of about  
240 K with an offset in dilatation of (120)(0.31 x 10 -5) = 3.7 x 10 -4. 
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